Histophilus somni Stimulates Expression of Antiviral Proteins and Inhibits BRSV Replication in Bovine Respiratory Epithelial Cells

Autor: Laurel J. Gershwin, Nicole E. Behrens, J. T. Agnes, Matt X. Shao, Y. Tagawa, Chin-Teng Lin, Lynette B. Corbeil
Rok vydání: 2015
Předmět:
0301 basic medicine
Pulmonology
Physiology
Protein Expression
lcsh:Medicine
Respiratory Syncytial Virus
Bovine

Virus Replication
Pathology and Laboratory Medicine
Toxicology
Bacterial Adhesion
Epithelium
Animal Cells
Medicine and Health Sciences
Toxins
Respiratory system
lcsh:Science
Cells
Cultured

Mammals
Multidisciplinary
Virulence
Up-Regulation
Bacterial Pathogens
medicine.anatomical_structure
Medical Microbiology
Viperin
Vertebrates
Cellular Types
Anatomy
Pathogens
Research Article
Haemophilus Infections
Virulence Factors
030106 microbiology
Toxic Agents
Bacterial Toxins
Antiviral protein
Bovine respiratory disease
Respiratory Mucosa
Respiratory Syncytial Virus Infections
Biology
Research and Analysis Methods
Antiviral Agents
Microbiology
Alveolar cells
03 medical and health sciences
Bovines
Virology
Haemophilus somnus
medicine
Gene Expression and Vector Techniques
Animals
Respiratory Physiology
Molecular Biology Techniques
Molecular Biology
Microbial Pathogens
Molecular Biology Assays and Analysis Techniques
lcsh:R
Organisms
Proteins
Biology and Life Sciences
Epithelial Cells
Cell Biology
medicine.disease
Endotoxins
030104 developmental biology
Biological Tissue
Viral replication
Respiratory Infections
lcsh:Q
Cattle
Viral Transmission and Infection
Respiratory tract
Zdroj: PLoS ONE
PLoS ONE, Vol 11, Iss 2, p e0148551 (2016)
ISSN: 1932-6203
Popis: Our previous studies showed that bovine respiratory syncytial virus (BRSV) followed by Histophilus somni causes more severe bovine respiratory disease and a more permeable alveolar barrier in vitro than either agent alone. However, microarray analysis revealed the treatment of bovine alveolar type 2 (BAT2) epithelial cells with H. somni concentrated culture supernatant (CCS) stimulated up-regulation of four antiviral protein genes as compared with BRSV infection or dual treatment. This suggested that inhibition of viral infection, rather than synergy, may occur if the bacterial infection occurred before the viral infection. Viperin (or radical S-adenosyl methionine domain containing 2--RSAD2) and ISG15 (IFN-stimulated gene 15--ubiquitin-like modifier) were most up-regulated. CCS dose and time course for up-regulation of viperin protein levels were determined in treated bovine turbinate (BT) upper respiratory cells and BAT2 lower respiratory cells by Western blotting. Treatment of BAT2 cells with H. somni culture supernatant before BRSV infection dramatically reduced viral replication as determined by qRT PCR, supporting the hypothesis that the bacterial infection may inhibit viral infection. Studies of the role of the two known H. somni cytotoxins showed that viperin protein expression was induced by endotoxin (lipooligosaccharide) but not by IbpA, which mediates alveolar permeability and H. somni invasion. A naturally occurring IbpA negative asymptomatic carrier strain of H. somni (129Pt) does not cause BAT2 cell retraction or permeability of alveolar cell monolayers, so lacks virulence in vitro. To investigate initial steps of pathogenesis, we showed that strain 129Pt attached to BT cells and induced a strong viperin response in vitro. Thus colonization of the bovine upper respiratory tract with an asymptomatic carrier strain lacking virulence may decrease viral infection and the subsequent enhancement of bacterial respiratory infection in vivo.
Databáze: OpenAIRE