Stability for the multifrequency inverse medium problem

Autor: Faouzi Triki, Gang Bao
Přispěvatelé: Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Zhejiang University, Equations aux Dérivées Partielles (EDP), Université Grenoble Alpes (UGA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), ANR-17-CE40-0029,MultiOnde,Problèmes Inverses Multi-Onde(2017)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Journal of Differential Equations
Journal of Differential Equations, Elsevier, 2020, 269, pp.7106-7128. ⟨10.1016/j.jde.2020.05.021⟩
Journal of Differential Equations, 2020, 269 (9), pp.7106-7128. ⟨10.1016/j.jde.2020.05.021⟩
ISSN: 0022-0396
1090-2732
Popis: International audience; The solution of a multi-frequency 1d inverse medium problem consists of recovering the refractive index of a medium from measurements of the scattered waves for multiple frequencies. In this paper, rigorous stability estimates are derived when the frequency takes value in a bounded interval. It is showed that the ill-posedness of the inverse medium problem decreases as the width of the frequency interval becomes larger. More precisely, under certain regularity assumptions on the refractive index, the estimates indicate that the power in Hölder stability is an increasing function of the largest value in the frequency band. Finally, a Lipschitz stability estimate is obtained for the observable part of the medium function defined through a truncated trace formula.
Databáze: OpenAIRE