Characterization of the catalytically active Mn(II)-loaded argE-encoded N-acetyl-L-ornithine deacetylase from Escherichia coli

Autor: Sabina Swierczek, Richard C. Holz, Brian Bennett, Wade C. McGregor
Rok vydání: 2006
Předmět:
Zdroj: Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry. 12(5)
ISSN: 0949-8257
Popis: The catalytically competent Mn(II)-loaded form of the argE-encoded N-acetyl-L-ornithine deacetylase from Escherichia coli (ArgE) was characterized by kinetic, thermodynamic, and spectroscopic methods. Maximum N-acetyl-L-ornithine (NAO) hydrolytic activity was observed in the presence of one Mn(II) ion with k(cat) and K(m) values of 550 s(-1) and 0.8 mM, respectively, providing a catalytic efficiency (k(cat)/K(m)) of 6.9 x 10(5) M(-1) s(-1). The ArgE dissociation constant (K(d)) for Mn(II) was determined to be 0.18 microM, correlating well with a value obtained by isothermal titration calorimetry of 0.30 microM for the first metal binding event and 5.3 microM for the second. An Arrhenius plot of the NAO hydrolysis for Mn(II)-loaded ArgE was linear from 15 to 55 degrees C, suggesting the rate-limiting step does not change as a function of temperature over this range. The activation energy, determined from the slope of this plot, was 50.3 kJ mol(-1). Other thermodynamic parameters were DeltaG(double dagger) = 58.1 kJ mol(-1), DeltaH(double dagger) = 47.7 kJ mol(-1), and DeltaS(double dagger) = -34.5 J mol(-1) K(-1). Similarly, plots of lnK(m) versus 1/T were linear, suggesting substrate binding is controlled by a single step. The natural product, [(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl]leucine (bestatin), was found to be a competitive inhibitor of ArgE with a K (i) value of 67 muM. Electron paramagnetic resonance (EPR) data recorded for both [Mn(II)_(ArgE)] and [Mn(II)Mn(II)(ArgE)] indicate that the two Mn(II) ions form a dinuclear site. Moreover, the EPR spectrum of [Mn(II)Mn(II)(ArgE)] in the presence of bestatin indicates that bestatin binds to ArgE but does not form a micro-alkoxide bridge between the two metal ions.
Databáze: OpenAIRE