Instability of Ginzburg—Landau vortices on manifolds

Autor: Ko-Shin Chen
Rok vydání: 2013
Předmět:
Zdroj: Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 143:337-350
ISSN: 1473-7124
0308-2105
DOI: 10.1017/s0308210511000795
Popis: We investigate two settings of the Ginzburg—Landau system posed on a manifold where vortices are unstable. The first is an instability result for critical points with vortices of the Ginzburg—Landau energy posed on a simply connected, compact, closed 2-manifold. The second is a vortex annihilation result for the Ginzburg—Landau heat flow posed on certain surfaces of revolution with boundary.
Databáze: OpenAIRE