A strong lensing model of the galaxy cluster PSZ1 G311.65-18.48

Autor: Claudio Grillo, G.V. Pignataro, Amata Mercurio, Eros Vanzella, P. Bergamini, Gabriel B. Brammer, Massimo Meneghetti, Piero Rosati, G. B. Caminha, Paolo Tozzi, G. Angora, Francesco Calura, Mario Nonino
Přispěvatelé: ITA, DEU, BRA, Pignataro G.V., Bergamini P., Meneghetti M., Vanzella E., Calura F., Grillo C., Rosati P., Angora G., Brammer G., Caminha G.B., Mercurio A., Nonino M., Tozzi P.
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Pignataro, G V, Bergamini, P, Meneghetti, M, Vanzella, E, Calura, F, Grillo, C, Rosati, P, Angora, G, Brammer, G, Caminha, G B, Mercurio, A, Nonino, M & Tozzi, P 2021, ' A strong lensing model of the galaxy cluster PSZ1 G311.65-18.48 ', Astronomy & Astrophysics, vol. 655, A81 . https://doi.org/10.1051/0004-6361/202141586
DOI: 10.1051/0004-6361/202141586
Popis: We present a strong lensing analysis of the galaxy cluster PSZ1 G311.65-18.48 (z = 0.443) using multi-band observations with Hubble Space Telescope complemented with VLT/MUSE spectroscopic data. The MUSE observations provide redshift estimates for the lensed sources and help to reduce misidentification of the multiple images. Spectroscopic data are also used to measure the inner velocity dispersions of 15 cluster galaxies and calibrate the scaling relations to model the subhalo cluster component. The model is based on 62 multiple images grouped in 17 families belonging to four different sources. The majority of them are multiple images of compact stellar knots belonging to a single star-forming galaxy at z = 2.3702. This source is strongly lensed by the cluster to form the Sunburst Arc system. To accurately reproduce all the multiple images, we built a parametric mass model, which includes both cluster-scale and galaxy-scale components. The resulting model has a rms separation between the model-predicted and the observed positions of the multiple images of only 0.14″. We conclude that PSZ1 G311.65-18.48 has a relatively round projected shape and a large Einstein radius (29″ for zs = 2.3702), which could indicate that the cluster is elongated along the line of sight. The Sunburst Arc source is located at the intersection of a complex network of caustics, which explains why parts of the arc are imaged with unprecedented multiplicity (up to 12 times).
Databáze: OpenAIRE