A Mountaineering Strategy to Excited States: Highly Accurate Reference Energies and Benchmarks
Autor: | Yann Garniron, Michel Caffarel, Anthony Scemama, Pierre-François Loos, Denis Jacquemin, Aymeric Blondel |
---|---|
Přispěvatelé: | Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université de Nantes (UN), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN) |
Rok vydání: | 2018 |
Předmět: |
Formamide
Chemical Physics (physics.chem-ph) Materials science Valence (chemistry) 010304 chemical physics FOS: Physical sciences Configuration interaction Cyclopropene Computational Physics (physics.comp-ph) 010402 general chemistry 01 natural sciences Molecular physics 0104 chemical sciences Computer Science Applications [CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry chemistry.chemical_compound Coupled cluster Acetylene chemistry Physics - Chemical Physics Excited state 0103 physical sciences Physical and Theoretical Chemistry Physics - Computational Physics Basis set |
Zdroj: | Journal of Chemical Theory and Computation Journal of Chemical Theory and Computation, American Chemical Society, 2018, 14 (8), pp.4360-4379. ⟨10.1021/acs.jctc.8b00406⟩ |
ISSN: | 1549-9626 1549-9618 |
DOI: | 10.1021/acs.jctc.8b00406⟩ |
Popis: | Striving to define very accurate vertical transition energies, we perform both high-level coupled cluster (CC) calculations (up to CCSDTQP) and selected configuration interaction (sCI) calculations (up to several millions of determinants) for 18 small compounds. By systematically increasing the order of the CC expansion, the number of determinants in the CI expansion as well as the size of the one-electron basis set, we have been able to reach near full CI (FCI) quality transition energies. These calculations are carried out on CC3/aug-cc-pVTZ geometries, using a series of increasingly large atomic basis sets systematically including diffuse functions. In this way, we define a list of 110 transition energies for states of various characters to be used as references for further calculations. Benchmark transition energies are provided at the aug-pVTZ level as well as with additional basis set corrections, in order to obtain results close to the complete basis set limit. These reference data are used to benchmark a series of twelve excited-state wave function methods accounting for double and triple contributions, namely ADC(2), ADC(3), CIS(D), CIS(D$_\infty$), CC2, STEOM-CCSD, CCSD, CCSDR(3), CCSDT-3, CC3, CCSDT and CCSDTQ. It turns out that CCSDTQ yields a negligible difference with the extrapolated CI values with a mean absolute error as small as $0.01$ eV, whereas the coupled cluster approaches including iterative triples are also very accurate (mean absolute error of $0.03$ eV). Consequently, CCSDT-3 and CC3 can be used to define reliable benchmarks. This observation does not hold for ADC(3) that delivers quite large errors for this set of small compounds, with a clear tendency to overcorrect its second-order version, ADC(2). Finally, we discuss the possibility to use basis set extrapolation approaches so as to tackle more easily larger compounds. Comment: 57 pages, 2 figures |
Databáze: | OpenAIRE |
Externí odkaz: |