Generalizing a theorem of Richard Brauer
Autor: | Bo-Hae Im, Michael Larsen |
---|---|
Rok vydání: | 2008 |
Předmět: |
Discrete mathematics
Algebra and Number Theory Collineation Fundamental theorem of Galois theory 010102 general mathematics Galois group Rational variety 01 natural sciences Combinatorics 010104 statistics & probability symbols.namesake Hypersurface symbols Projective space Projective linear group 0101 mathematics Quaternionic projective space Mathematics |
Zdroj: | Journal of Number Theory. 128:3031-3036 |
ISSN: | 0022-314X |
DOI: | 10.1016/j.jnt.2008.04.004 |
Popis: | There exists a function f:N→N such that for every positive integer d, every quasi-finite field K and every projective hypersurface X of degree d and dimension ⩾f(d), the set X(K) is non-empty. This is a special case of a more general result about intersections of hypersurfaces of fixed degree in projective spaces of sufficiently high dimension over fields with finitely generated Galois groups. |
Databáze: | OpenAIRE |
Externí odkaz: |