Generalizing a theorem of Richard Brauer

Autor: Bo-Hae Im, Michael Larsen
Rok vydání: 2008
Předmět:
Zdroj: Journal of Number Theory. 128:3031-3036
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2008.04.004
Popis: There exists a function f:N→N such that for every positive integer d, every quasi-finite field K and every projective hypersurface X of degree d and dimension ⩾f(d), the set X(K) is non-empty. This is a special case of a more general result about intersections of hypersurfaces of fixed degree in projective spaces of sufficiently high dimension over fields with finitely generated Galois groups.
Databáze: OpenAIRE