Bench Testing of a Bubble Noninvasive Ventilation Device in an Infant Lung Simulator
Autor: | Anna V John, Luis Fernando-Silva, Stephen C John, Albert W Moss, Sunil P John, Peter A. Gustafson |
---|---|
Rok vydání: | 2020 |
Předmět: |
Pulmonary and Respiratory Medicine
Noninvasive Ventilation Ventilators Mechanical Respiratory distress business.industry Bubble Infant General Medicine Equipment Design Critical Care and Intensive Care Medicine 03 medical and health sciences 0302 clinical medicine 030228 respiratory system Pressure waveform Bubble CPAP Anesthesia Tidal Volume Medicine Humans Noninvasive ventilation Lung simulator Neonatal death business Lung Pressure gradient |
Zdroj: | Respiratory care. 65(9) |
ISSN: | 1943-3654 |
Popis: | BACKGROUND: Infant respiratory distress remains a significant problem worldwide, leading to more than one million neonatal deaths each year. The cost, maintenance, energy, and personnel required to implement ventilators have proven to be a barrier in many resource-limited settings. To address these barriers, a nonelectric bubble noninvasive positive pressure ventilation (NIV) device was developed. This study aims to benchmark the performance of this bubble NIV device against commercially available ventilators. METHODS: The delivered pressure waveforms and tidal volumes of the bubble NIV device were compared with those of 2 conventional ventilators (ie, Drager Evita Infinity V500 and Hamilton G5) at the following pressure settings: 8/5, 12/5, and 15/5 cm H2O. To simulate the lung mechanics of an infant in respiratory distress, tests were conducted on the IngMar ASL 5000 Test Lung simulator. Resistance was set at 100 cm H2O/L/s, and compliance was tested at 0.5, 1.0, and 2.0 mL/cm H2O to simulate 3 different patients. RESULTS: The delivered pressure waveforms and compliance curves of the bubble NIV device are similar to those of the Hamilton and Drager ventilators. The mean ± SD differences between delivered versus set pressure gradient (ie, the difference between the high delivered pressure and the low delivered pressure) for each treatment modality across the various values of compliance were −2 ± 8% for the bubble NIV device, 3 ± 4% for the Drager ventilator, and 7 ± 10% for the Hamilton ventilator. CONCLUSIONS: The similarity of pressure waveforms and delivered tidal volumes in this simulated clinical scenario suggest that the bubble NIV device may provide comparable efficacy compared with traditional ventilator treatment for a range of patients. This may provide clinicians in resource-limited settings with an additional, simple, nonelectric treatment modality for the management of infant respiratory distress. |
Databáze: | OpenAIRE |
Externí odkaz: |