Expanding Our Understanding of COVID-19 from Biomedical Literature Using Word Embedding

Autor: Eunsoo Sohn, Heyoung Yang
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: International Journal of Environmental Research and Public Health
Volume 18
Issue 6
International Journal of Environmental Research and Public Health, Vol 18, Iss 3005, p 3005 (2021)
ISSN: 1660-4601
DOI: 10.3390/ijerph18063005
Popis: A better understanding of the clinical characteristics of coronavirus disease 2019 (COVID-19) is urgently required to address this health crisis. Numerous researchers and pharmaceutical companies are working on developing vaccines and treatments
however, a clear solution has yet to be found. The current study proposes the use of artificial intelligence methods to comprehend biomedical knowledge and infer the characteristics of COVID-19. A biomedical knowledge base was established via FastText, a word embedding technique, using PubMed literature from the past decade. Subsequently, a new knowledge base was created using recently published COVID-19 articles. Using this newly constructed knowledge base from the word embedding model, a list of anti-infective drugs and proteins of either human or coronavirus origin were inferred to be related, because they are located close to COVID-19 on the knowledge base. This study attempted to form a method to quickly infer related information about COVID-19 using the existing knowledge base, before sufficient knowledge about COVID-19 is accumulated. With COVID-19 not completely overcome, machine learning-based research in the PubMed literature will provide a broad guideline for researchers and pharmaceutical companies working on treatments for COVID-19.
Databáze: OpenAIRE