Carbonaceous filler type and content dependence of the physical-chemical and electromechanical properties of thermoplastic elastomer polymer composites
Autor: | Clara García-Astrain, Júlio C. Viana, J.R. Dios, Senentxu Lanceros-Méndez, Pedro Costa |
---|---|
Přispěvatelé: | Universidade do Minho |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
thermal annealing
Filler (packaging) Materials science piezoresistive materials polymer composites Composite number polymercomposites 02 engineering and technology Carbon nanotube 010402 general chemistry 01 natural sciences lcsh:Technology Article law.invention law General Materials Science Composite material Thermoplastic elastomer lcsh:Microscopy lcsh:QC120-168.85 nanocarbonanceous fillers Science & Technology lcsh:QH201-278.5 Graphene Carbon nanofiber lcsh:T Percolation threshold 021001 nanoscience & nanotechnology 0104 chemical sciences Gauge factor lcsh:TA1-2040 lcsh:Descriptive and experimental mechanics lcsh:Electrical engineering. Electronics. Nuclear engineering 0210 nano-technology lcsh:Engineering (General). Civil engineering (General) lcsh:TK1-9971 |
Zdroj: | Materials Repositório Científico de Acesso Aberto de Portugal Repositório Científico de Acesso Aberto de Portugal (RCAAP) instacron:RCAAP Materials, Vol 12, Iss 9, p 1405 (2019) Volume 12 Issue 9 |
Popis: | Graphene, carbon nanotubes (CNT), and carbon nanofibers (CNF) are the most studied nanocarbonaceous fillers for polymer-based composite fabrication due to their excellent overall properties. The combination of thermoplastic elastomers with excellent mechanical properties (e.g., styrene-b-(ethylene-co-butylene)-b-styrene (SEBS)) and conductive nanofillers such as those mentioned previously opens the way to the preparation of multifunctional materials for large-strain (up to 10% or even above) sensor applications. This work reports on the influence of different nanofillers (CNT, CNF, and graphene) on the properties of a SEBS matrix. It is shown that the overall properties of the composites depend on filler type and content, with special influence on the electrical properties. CNT/SEBS composites presented a percolation threshold near 1 wt.% filler content, whereas CNF and graphene-based composites showed a percolation threshold above 5 wt.%. Maximum strain remained similar for most filler types and contents, except for the largest filler contents (1 wt.% or more) in graphene (G)/SEBS composites, showing a reduction from 600% for SEBS to 150% for 5G/SEBS. Electromechanical properties of CNT/SEBS composite for strains up to 10% showed a gauge factor (GF) varying from 2 to 2.5 for different applied strains. The electrical conductivity of the G and CNF composites at up to 5 wt.% filler content was not suitable for the development of piezoresistive sensing materials. We performed thermal ageing at 120 °C for 1, 24, and 72 h for SEBS and its composites with 5 wt.% nanofiller content in order to evaluate the stability of the material properties for high-temperature applications. The mechanical, thermal, and chemical properties of SEBS and the composites were identical to those of pristine composites, but the electrical conductivity decreased by near one order of magnitude and the GF decreased to values between 0.5 and 1 in aged CNT/SEBS composites. Thus, the materials can still be used as large-deformation sensors, but the reduction of both electrical and electromechanical response has to be considered. ThisworkwassupportedbythePortugueseFoundationforScienceandTechnology(FCT)intheframework of the StrategicFunding UID/FIS/04650/2013 and UID/CTM/50025/2013. Financial support was also provided by ERDF funds through the Portuguese Operational Programme for Competitiveness and Internationalization-COMPETE 2020, and national funds through FCT, under projects PTDC/EEI-SII/5582/2014 and PTDC/CTM-ENE/5387/2014. PC thanks to FCT by financial support for the SFRH/BPD/110914/2015 grant. Financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-3-R (AEI/FEDER, UE) (including the FEDER financial support) and from the Basque Government Industry Department under the ELKARTEK (ACTIMAT project) and HAZITEK programare also acknowledged. info:eu-repo/semantics/publishedVersion |
Databáze: | OpenAIRE |
Externí odkaz: |