Maximal regularity for elliptic operators with second-order discontinuous coefficients

Autor: Chiara Spina, L. Negro, Giorgio Metafune
Přispěvatelé: Metafune, G., Negro, L., Spina, C.
Rok vydání: 2020
Předmět:
Zdroj: Journal of Evolution Equations. 21:3613-3637
ISSN: 1424-3202
1424-3199
DOI: 10.1007/s00028-020-00637-3
Popis: We prove maximal regularity for parabolic problems associated to the second-order elliptic operator $$\begin{aligned} L =\Delta +(a-1)\sum _{i,j=1}^N\frac{x_ix_j}{|x|^2}D_{ij}+c\frac{x}{|x|^2}\cdot \nabla -b|x|^{-2} \end{aligned}$$ L = Δ + ( a - 1 ) ∑ i , j = 1 N x i x j | x | 2 D ij + c x | x | 2 · ∇ - b | x | - 2 with $$a>0$$ a > 0 and $$b,\ c$$ b , c real coefficients.
Databáze: OpenAIRE