Maximal regularity for elliptic operators with second-order discontinuous coefficients
Autor: | Chiara Spina, L. Negro, Giorgio Metafune |
---|---|
Přispěvatelé: | Metafune, G., Negro, L., Spina, C. |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Journal of Evolution Equations. 21:3613-3637 |
ISSN: | 1424-3202 1424-3199 |
DOI: | 10.1007/s00028-020-00637-3 |
Popis: | We prove maximal regularity for parabolic problems associated to the second-order elliptic operator $$\begin{aligned} L =\Delta +(a-1)\sum _{i,j=1}^N\frac{x_ix_j}{|x|^2}D_{ij}+c\frac{x}{|x|^2}\cdot \nabla -b|x|^{-2} \end{aligned}$$ L = Δ + ( a - 1 ) ∑ i , j = 1 N x i x j | x | 2 D ij + c x | x | 2 · ∇ - b | x | - 2 with $$a>0$$ a > 0 and $$b,\ c$$ b , c real coefficients. |
Databáze: | OpenAIRE |
Externí odkaz: |