Normalized Laplacian spectrum of some subdivision-joins and R-joins of two regular graphs
Autor: | Pratima Panigrahi, Arpita Das |
---|---|
Rok vydání: | 2018 |
Předmět: |
Vertex (graph theory)
Joins 010103 numerical & computational mathematics 0102 computer and information sciences subdivision-edge join 01 natural sciences Laplacian eigenvalues Combinatorics subdivision-vertex join Discrete Mathematics and Combinatorics Computer Science::Symbolic Computation 0101 mathematics Computer Science::Databases Mathematics Subdivision vertex join edge join Discrete mathematics Laplacian spectrum business.industry lcsh:Mathematics Mathematics::Spectral Theory lcsh:QA1-939 010201 computation theory & mathematics Laplacian smoothing Laplacian matrix business Laplace operator normalized laplacian matrix |
Zdroj: | AKCE International Journal of Graphs and Combinatorics, Vol 15, Iss 3, Pp 261-270 (2018) |
ISSN: | 2543-3474 0972-8600 |
DOI: | 10.1016/j.akcej.2017.10.006 |
Popis: | In this paper we determine the full normalized Laplacian spectrum of the subdivision-vertex join, subdivision-edge join, R-vertex join, and R-edge join of two regular graphs in terms of the normalized Laplacian eigenvalues of the graphs. Moreover, applying these results we find non-regular normalized Laplacian cospectral graphs. Keywords: Normalized Laplacian matrix, Subdivision-vertex join, Subdivision-edge join, R-vertex join, R-edge join |
Databáze: | OpenAIRE |
Externí odkaz: |