The Mazur-Ulam property for the space of complex null sequences

Autor: Jim��nez-Vargas, Antonio, Campoy, Antonio Morales, Peralta, Antonio M., Ram��rez, Mar��a Isabel
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Popis: Given an infinite set $\Gamma$, we prove that the space of complex null sequences $c_0(\Gamma)$ satisfies the Mazur-Ulam property, that is, for each Banach space $X$, every surjective isometry from the unit sphere of $c_0(\Gamma)$ onto the unit sphere of $X$ admits a (unique) extension to a surjective real linear isometry from $c_0(\Gamma)$ to $X$. We also prove that the same conclusion holds for the finite dimensional space $\ell_{\infty}^m$.
Databáze: OpenAIRE