Decoration of plasmonic Mg nanoparticles by partial galvanic replacement
Autor: | John S. Biggins, Yuchen Wu, Christina Boukouvala, Sean M. Collins, Emilie Ringe, Elizabeth R. Hopper, Jérémie Asselin |
---|---|
Přispěvatelé: | Collins, Sean [0000-0002-5151-6360], Biggins, John [0000-0002-7452-2421], Ringe, Emilie [0000-0003-3743-9204], Apollo - University of Cambridge Repository |
Rok vydání: | 2019 |
Předmět: |
Plasmonic nanoparticles
Materials science 010304 chemical physics 34 Chemical Sciences Oxide General Physics and Astronomy Nanoparticle Nanotechnology 010402 general chemistry 01 natural sciences 0104 chemical sciences chemistry.chemical_compound chemistry 0103 physical sciences Scanning transmission electron microscopy 3406 Physical Chemistry Particle Nanorod 4018 Nanotechnology Physical and Theoretical Chemistry Bimetallic strip Plasmon 40 Engineering |
Zdroj: | The Journal of Chemical Physics |
ISSN: | 0021-9606 |
Popis: | Plasmonic structures have attracted much interest in science and engineering disciplines, exploring a myriad of potential applications owing to their strong light-matter interactions. Recently, the plasmonic concentration of energy in subwavelength volumes has been used to initiate chemical reactions, for instance by combining plasmonic materials with catalytic metals. In this work, we demonstrate that plasmonic nanoparticles of earth-abundant Mg can undergo galvanic replacement in a nonaqueous solvent to produce decorated structures. This method yields bimetallic architectures where partially oxidized 200–300 nm Mg nanoplates and nanorods support many smaller Au, Ag, Pd, or Fe nanoparticles, with potential for a stepwise process introducing multiple decoration compositions on a single Mg particle. We investigated this mechanism by electron-beam imaging and local composition mapping with energy-dispersive X-ray spectroscopy as well as, at the ensemble level, by inductively coupled plasma mass spectrometry. High-resolution scanning transmission electron microscopy further supported the bimetallic nature of the particles and provided details of the interface geometry, which includes a Mg oxide separation layer between Mg and the other metal. Depending on the composition of the metallic decorations, strong plasmonic optical signals characteristic of plasmon resonances were observed in the bulk with ultraviolet-visible spectrometry and at the single particle level with darkfield scattering. These novel bimetallic and multimetallic designs open up an exciting array of applications where one or multiple plasmonic structures could interact in the near-field of earth-abundant Mg and couple with catalytic nanoparticles for applications in sensing and plasmon-assisted catalysis. |
Databáze: | OpenAIRE |
Externí odkaz: |