Nematus: a Toolkit for Neural Machine Translation

Autor: Alexandra Birch, Marcin Junczys-Dowmunt, Samuel Läubli, Barry Haddow, Kyunghyun Cho, Julian Hitschler, Antonio Valerio Miceli Barone, Maria Nadejde, Rico Sennrich, Jozef Mokry, Orhan Firat
Přispěvatelé: University of Zurich
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Sennrich, R, Firat, O, Cho, K, Birch-Mayne, A, Haddow, B, Hitschler, J, Junczys-Dowmunt, M, Läubli, S, Miceli Barone, A V, Mokry, J & Nadejde, M 2017, Nematus: a Toolkit for Neural Machine Translation . in Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the Association for Computational Linguistics . Valencia, Spain, pp. 65-68, 15th EACL 2017 Software Demonstrations, Valencia, Spain, 3/04/17 . https://doi.org/10.18653/v1/E17-3017
Sennrich, R, Firat, O, Cho, K, Birch-Mayne, A, Haddow, B, Hitschler, J, Junczys-Dowmunt, M, Läubli, S, Miceli Barone, A, Mokry, J & Nadejde, M 2017, Nematus: a Toolkit for Neural Machine Translation . in Proceedings of the EACL 2017 Software Demonstrations . Association for Computational Linguistics (ACL), pp. 65-68 .
Sennrich, Rico; Firat, Orhan; Cho, Kyunghyun; Birch, Alexandra; Haddow, Barry; Hitschler, Julian; Junczys-Dowmunt, Marcin; Läubli, Samuel; Miceli Barone, Antonio Valerio; Mokry, Jozef; Nadejde, Maria (2017). Nematus: a Toolkit for Neural Machine Translation. In: Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL), Valencia, Spain, 3 April 2017-7 April 2017, 65-68.
Zurich Open Repository and Archive
Edinburgh Research Explorer
arXiv.org e-Print Archive
EACL (Software Demonstrations)
Scopus-Elsevier
DOI: 10.18653/v1/E17-3017
Popis: We present Nematus, a toolkit for Neural Machine Translation. The toolkit prioritizes high translation accuracy, usability, and extensibility. Nematus has been used to build top-performing submissions to shared translation tasks at WMT and IWSLT, and has been used to train systems for production environments.
EACL 2017 demo track
Databáze: OpenAIRE