A fictitious domain decomposition method for a nonlinear bonded structure
Autor: | Jonas Koko, Amina Chorfi, Olivier Bodart |
---|---|
Přispěvatelé: | Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne), Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA), Modélisation mathématique, calcul scientifique (MMCS), Institut Camille Jordan (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2021 |
Předmět: |
General Computer Science
Saddle-point problem Basis function 010103 numerical & computational mathematics 02 engineering and technology 01 natural sciences Domain (mathematical analysis) Theoretical Computer Science Conjugate gradient method 0202 electrical engineering electronic engineering information engineering Bonded structure Domain decomposition [MATH]Mathematics [math] 0101 mathematics Saddle Extended finite element method Physics Numerical Analysis Applied Mathematics Mathematical analysis Domain decomposition methods Elasticity Finite element method Nonlinear system Modeling and Simulation 020201 artificial intelligence & image processing |
Zdroj: | Mathematics and Computers in Simulation Mathematics and Computers in Simulation, 2021, 189, pp.114-125. ⟨10.1016/j.matcom.2020.09.003⟩ |
ISSN: | 0378-4754 |
DOI: | 10.1016/j.matcom.2020.09.003 |
Popis: | International audience; We study a fictitious domain decomposition method for a nonlinearly bonded structure. Starting with a strongly convex unconstrained minimization problem, we introduce an interface unknown such that the displacement problems on each subdomain become uncoupled in the saddle-point equations. The interface unknown is eliminated and a Uzawa conjugate gradient domain decomposition method is derived from the saddle-point equations of the stabilized Lagrangian functional. To avoid interface fitted meshes we use a fictitious domain approach, inspired by XFEM, which consists in cutting the finite element basis functions around the interface. Some numerical experiments are proposed to illustrate the efficiency of the proposed method. (C) 2020 International Association for Mathematics and Computers in Simulation (IMACS). |
Databáze: | OpenAIRE |
Externí odkaz: |