Hydrogen-based direct reduction of iron oxide at 700°C: Heterogeneity at pellet and microstructure scales

Autor: Yan Ma, Isnaldi R. Souza Filho, Xue Zhang, Supriya Nandy, Pere Barriobero-Vila, Guillermo Requena, Dirk Vogel, Michael Rohwerder, Dirk Ponge, Hauke Springer, Dierk Raabe
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Ciència i Enginyeria de Materials, Universitat Politècnica de Catalunya. CIEFMA-PROCOMAME - Disseny Microestructural i Fabricació Avançada de Materials
Rok vydání: 2022
Předmět:
Zdroj: International journal of minerals, metallurgy and materials 29(10), 1901-1907 (2022). doi:10.1007/s12613-022-2440-5
Ma, Y.; Souza Filho, I.R.; Zhang, X.; Nandy, S.; Barriobero-Vila, P.; Requena, G.; Vogel, D.; Rohwerder, M.; Ponge, D.; Springer, H.; Raabe, D.: Hydrogen-based direct reduction of iron oxide at 700°C: Heterogeneity at pellet and microstructure scales. In: International Journal of Minerals, Metallurgy and Materials. Vol. 29 (2022) 10, 1901-1907. (DOI: /10.1007/s12613-022-2440-5)
International Journal of Minerals, Metallurgy and Materials
ISSN: 1869-103X
1674-4799
DOI: 10.1007/s12613-022-2440-5
Popis: International journal of minerals, metallurgy and materials 29(10), 1901 - 1907 (2022). doi:10.1007/s12613-022-2440-5
Steel production causes a third of all industrial CO2 emissions due to the use of carbon-based substances as reductants for iron ores, making it a key driver of global warming. Therefore, research efforts aim to replace these reductants with sustainably produced hydrogen. Hydrogen-based direct reduction (HyDR) is an attractive processing technology, given that direct reduction (DR) furnaces are routinely operated in the steel industry but with CH$_4$ or CO as reductants. Hydrogen diffuses considerably faster through shaft-furnace pellet agglomerates than carbon-based reductants. However, the net reduction kinetics in HyDR remains extremely sluggish for high-quantity steel production, and the hydrogen consumption exceeds the stoichiometrically required amount substantially. Thus, the present study focused on the improved understanding of the influence of spatial gradients, morphology, and internal microstructures of ore pellets on reduction efficiency and metallization during HyDR. For this purpose, commercial DR pellets were investigated using synchrotron high-energy X-ray diffraction and electron microscopy in conjunction with electron backscatter diffraction and chemical probing. Revealing the interplay of different phases with internal interfaces, free surfaces, and associated nucleation and growth mechanisms provides a basis for developing tailored ore pellets that are highly suited for a fast and efficient HyDR.
Published by Springer, Bei jing shi
Databáze: OpenAIRE