Accurate summation, dot product and polynomial evaluation in complex floating point arithmetic

Autor: Stef Graillat, Valérie Ménissier-Morain
Přispěvatelé: Performance et Qualité des Algorithmes Numériques (PEQUAN), Laboratoire d'Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2012
Předmět:
Zdroj: Information and Computation
Information and Computation, 2012, 216, pp.57-71. ⟨10.1016/j.ic.2011.09.003⟩
Information and Computation, Elsevier, 2012, pp.57-71. ⟨10.1016/j.ic.2011.09.003⟩
ISSN: 0890-5401
1090-2651
DOI: 10.1016/j.ic.2011.09.003
Popis: International audience; Several different techniques and softwares intend to improve the accuracy of resultscomputed in a fixed finite precision. Here we focus on methods to improve the accuracyof summation, dot product and polynomial evaluation. Such algorithms exist real floatingpoint numbers. In this paper, we provide new algorithms which deal with complex floatingpoint numbers. We show that the computed results are as accurate as if computed intwice the working precision. The algorithms are simple since they only require additionsubtraction and multiplication of floating point numbers in the same working precision asthe given data.
Databáze: OpenAIRE