Discontinuous Petrov–Galerkin Approximation of Eigenvalue Problems
Autor: | Fleurianne Bertrand, Daniele Boffi, Henrik Schneider |
---|---|
Přispěvatelé: | Mathematics of Computational Science, MESA+ Institute |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Computational Methods in Applied Mathematics, 23(1), 1-17. De Gruyter |
ISSN: | 1609-9389 1609-4840 |
DOI: | 10.1515/cmam-2022-0069 |
Popis: | In this paper, the discontinuous Petrov–Galerkin approximation of the Laplace eigenvalue problem is discussed. We consider in particular the primal and ultraweak formulations of the problem and prove the convergence together with a priori error estimates. Moreover, we propose two possible error estimators and perform the corresponding a posteriori error analysis. The theoretical results are confirmed numerically, and it is shown that the error estimators can be used to design an optimally convergent adaptive scheme. |
Databáze: | OpenAIRE |
Externí odkaz: |