Tailoring Strain and Morphology of Core–Shell SiGe Nanowires by Low-Temperature Ge Condensation
Autor: | Thomas David, Vincent Calvo, Marc Gailhanou, Jean-Noël Aqua, Antoine Ronda, Pascal Gentile, Kailang Liu, Michele Amato, Marco Abbarchi, Denis Buttard, Isabelle Berbezier, Luc Favre |
---|---|
Přispěvatelé: | Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Silicon Nanoelectronics Photonics and Structures (SiNaps), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre de Nanosciences et de Nanotechnologies [Orsay] (C2N), Université Paris-Sud - Paris 11 (UP11)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Physico-chimie et dynamique des surfaces (INSP-E6), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Nanostructure
Materials science Silicon SiGe oxidation Nanowire chemistry.chemical_element Bioengineering Germanium Nanotechnology 02 engineering and technology 01 natural sciences chemistry.chemical_compound strain 0103 physical sciences Microelectronics General Materials Science [SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics 010302 applied physics Thermal oxidation business.industry Mechanical Engineering Condensation General Chemistry GPA core−shellnanowire 021001 nanoscience & nanotechnology Condensed Matter Physics Silicon-germanium chemistry elasticity 0210 nano-technology business |
Zdroj: | Nano Letters Nano Letters, 2017, 17 (12), pp.7299-7305. ⟨10.1021/acs.nanolett.7b02832⟩ Nano Letters, American Chemical Society, 2017, 17 (12), pp.7299-7305. ⟨10.1021/acs.nanolett.7b02832⟩ |
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.7b02832⟩ |
Popis: | International audience; Selective oxidation of the silicon element of silicon germanium (SiGe) alloys during thermal oxidation is a very important and technologically relevant mechanism used to fabricate a variety of microelectronic devices. We develop here a simple integrative approach involving vapor−liquid−solid (VLS) growth followed by selective oxidation steps to the construction of core−shell nanowires and higher-level ordered systems with scalable configurations. We examine the selective oxidation/ 16 condensation process under nonequilibrium conditions that gives rise to spontaneous formation of core−shell structures by germanium condensation. We contrast this strategy that uses reaction-diffusion-segregation mechanisms to produce coherently strained structures with highly configurable geometry and abrupt interfaces with growth-based processes which lead to low strained systems with nonuniform composition, three-dimensional morphology, and broad core−shell interface. We specially focus on SiGe core−shell nanowires and demonstrate that they can have up to 70% Ge-rich shell and 2% homogeneous strain with core diameter as small as 14 nm. Key elements of the building process associated with this approach are identified with regard to existing theoretical models. Moreover, starting from results of ab initio calculations, we discuss the electronic structure 23 of these novel nanostructures as well as their wide potential for advanced device applications. |
Databáze: | OpenAIRE |
Externí odkaz: |