Magneto-transport in inverted HgTe quantum wells
Autor: | Jerzy Wróbel, I. Yahniuk, Vladimir I. Gavrilenko, K. E. Spirin, Sławomir Kret, Benoit Jouault, G. Grabecki, Nikolay N. Mikhailov, Wojciech Knap, Wilfried Desrat, Frederic Teppe, Alexander M. Kadykov, Grzegorz Cywiński, Dmytro B. But, Tomasz Dietl, Sergey A. Dvoretsky, Sergey S. Krishtopenko, Christophe Consejo, M. Majewicz |
---|---|
Přispěvatelé: | Institute of High Pressure Physics [Warsaw] (IHPP), Polska Akademia Nauk = Polish Academy of Sciences (PAN), Laboratoire Charles Coulomb (L2C), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
02 engineering and technology
Quantum Hall effect lcsh:Atomic physics. Constitution and properties of matter 01 natural sciences Quantization (physics) symbols.namesake 0103 physical sciences lcsh:TA401-492 Quantum metrology Холла квантовый эффект Topological order 010306 general physics Quantum well Physics Condensed matter physics business.industry Condensed Matter::Other Fermi level магнитотранспортные свойства 021001 nanoscience & nanotechnology Condensed Matter Physics Condensed Matter::Mesoscopic Systems and Quantum Hall Effect теллурид ртути lcsh:QC170-197 Electronic Optical and Magnetic Materials Semiconductor Topological insulator symbols [PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] квантовые ямы lcsh:Materials of engineering and construction. Mechanics of materials 0210 nano-technology business |
Zdroj: | npj Quantum materials. 2019. Vol. 4. P. 13 (1-8) Npj Quantum Materials Npj Quantum Materials, Nature publishing, 2019, 4, pp.13. ⟨10.1038/s41535-019-0154-3⟩ npj Quantum Materials, Vol 4, Iss 1, Pp 1-8 (2019) |
ISSN: | 2397-4648 |
DOI: | 10.1038/s41535-019-0154-3⟩ |
Popis: | HgTe quantum wells (QWs) are two-dimensional semiconductor systems that change their properties at the critical thickness dc, corresponding to the band inversion and topological phase transition. The motivation of this work was to study magnetotransport properties of HgTe QWs with thickness approaching dc, and examine them as potential candidates for quantum Hall effect (QHE) resistance standards. We show that in the case of d > dc (inverted QWs), the quantization is influenced by coexistence of topological helical edge states and QHE chiral states. However, at d ≈ dc, where QW states exhibit a graphene-like band structure, an accurate Hall resistance quantization in low magnetic fields (B ≤ 1.4 T) and at relatively high temperatures (T ≥ 1.3 K) may be achieved. We observe wider and more robust quantized QHE plateaus for holes, which suggests—in accordance with the “charge reservoir” model—a pinning of the Fermi level in the valence band region. Our analysis exhibits advantages and drawbacks of HgTe QWs for quantum metrology applications, as compared to graphene and GaAs counterparts. |
Databáze: | OpenAIRE |
Externí odkaz: |