Quasi-convex Hamilton-Jacobi equations posed on junctions: The multi-dimensional case

Autor: Cyril Imbert, Régis Monneau
Přispěvatelé: Département de Mathématiques et Applications - ENS Paris (DMA), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC), ANR-12-BS01-0008,HJnet,Equations de Hamilton-Jacobi sur des structures hétérogènes et des réseaux(2012), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Discrete and Continuous Dynamical Systems-Series A
Discrete and Continuous Dynamical Systems-Series A, American Institute of Mathematical Sciences, 2017, 37, pp.6405-6435. ⟨10.3934/dcds.2017278⟩
ISSN: 1078-0947
DOI: 10.3934/dcds.2017278⟩
Popis: A multi-dimensional junction is obtained by identifying the boundaries of a finite number of copies of an Euclidian half-space. The main contribution of this article is the construction of a multidimensional vertex test function G(x, y). First, such a function has to be sufficiently regular to be used as a test function in the viscosity solution theory for quasi-convex Hamilton-Jacobi equations posed on a multi-dimensional junction. Second, its gradients have to satisfy appropriate compatibility conditions in order to replace the usual quadratic pe-nalization function |x -- y| 2 in the proof of strong uniqueness (comparison principle) by the celebrated doubling variable technique. This result extends a construction the authors previously achieved in the network setting. In the multi-dimensional setting, the construction is less explicit and more delicate. Mathematical Subject Classification: 35F21, 49L25, 35B51.
28 pages. Second version
Databáze: OpenAIRE