Geometric orbital integrals and the center of the enveloping algebra
Autor: | Bismut, Jean-Michel, Shen, Shu |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques d'Orsay (LM-Orsay), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2022 |
Předmět: |
Mathematics - Differential Geometry
Algebra and Number Theory [MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] Differential Geometry (math.DG) [MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION FOS: Mathematics Group Theory (math.GR) Representation Theory (math.RT) Mathematics - Group Theory Mathematics - Representation Theory [MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] |
Zdroj: | Compositio Mathematica. 158:1189-1253 |
ISSN: | 1570-5846 0010-437X |
Popis: | The purpose of this paper is to extend the explicit geometric evaluation of semisimple orbital integrals for smooth kernels for the Casimir operator obtained by the first author to the case of kernels for arbitrary elements in the center of the enveloping algebra. |
Databáze: | OpenAIRE |
Externí odkaz: |