Inferring the votes in a new political landscape: the case of the 2019 Spanish Presidential elections

Autor: Hugo Arboleda, Javier Diaz Cely, Didier Grimaldi
Přispěvatelé: Universitat Ramon Llull. La Salle, Universidad Icesi
Rok vydání: 2020
Předmět:
Value (ethics)
Information Systems and Management
Scrutiny
lcsh:Computer engineering. Computer hardware
Presidential election
Computer Networks and Communications
Computer science
Election
media_common.quotation_subject
Twitter
lcsh:TK7885-7895
02 engineering and technology
Lexicon
lcsh:QA75.5-76.95
Politics
Big social data
00 - Ciència i coneixement. Investigació. Cultura. Humanitats
65 - Gestió i organització. Administració i direcció d'empreses. Publicitat. Relacions públiques. Mitjans de comunicació de masses
020204 information systems
Voting
Machine learning
Aprenentatge automàtic
0202 electrical engineering
electronic engineering
information engineering

media_common
Presidential system
lcsh:T58.5-58.64
lcsh:Information technology
004 - Informàtica
Sentiment analysis
Dades massives
32 - Política
Espanya. Parlament -- Eleccions
2019

Data science
Eleccions -- Xarxes socials
Hardware and Architecture
Spain
020201 artificial intelligence & image processing
lcsh:Electronic computers. Computer science
Prediction
62 - Enginyeria. Tecnologia
Information Systems
Zdroj: RECERCAT (Dipòsit de la Recerca de Catalunya)
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Journal of Big Data, Vol 7, Iss 1, Pp 1-19 (2020)
Recercat. Dipósit de la Recerca de Catalunya
instname
Popis: The avalanche of personal and social data circulating in Online Social Networks over the past 10 years has attracted a great deal of interest from Scholars and Practitioners who seek to analyse not only their value, but also their limits. Predicting election results using Twitter data is an example of how data can directly influence the politic domain and it also serves an appealing research topic. This article aims to predict the results of the 2019 Spanish Presidential election and the voting share of each candidate, using Tweeter. The method combines sentiment analysis and volume information and compares the performance of five Machine Learning algorithms. Several data scrutiny uncertainties arose that hindered the prediction of the outcome. Consequently, the method develops a political lexicon-based framework to measure the sentiments of online users. Indeed, an accurate understanding of the contextual content of the tweets posted was vital in this work. Our results correctly ranked the candidates and determined the winner by means of a better prediction of votes than official research institutes.
Databáze: OpenAIRE