A 200-year snapshot of soil development in pyroclastic deposits derived from the 1815 super explosive eruption of Mount Tambora in Indonesia

Autor: Markus Anda, Setiyo Purwanto, Ai Dariah, Tetsuhiro Watanabe, Randy A. Dahlgren
Rok vydání: 2023
Předmět:
Popis: Early-stage pedogenic processes and formation rates on completely obliterated volcanic landscapes, such as the super explosive 1815 Mount Tambora eruption, have not previously been robustly explored. The objectives of this study were to determine (i) the mineralogical composition of the sand fraction, selected physical and chemical soil properties and potential nutrient reserves after 200 years of pedogenesis, and (ii) chemical weathering indices, rate of soil formation, and rates of C and N accretion. Soil formation was examined for five soil profiles on stable plain/foot slope positions representing the diversity of soils in these landscape positions, which are important for agricultural production. Results showed that the soil mineralogical composition of the sand fraction was dominated by easily weatherable minerals (e.g., labradorite and augite volcanic glass) indicating high potential nutrient reserves (e.g., Ca2+, Mg2+, K+, P) as confirmed by X-ray fluorescence (XRF) analyses. Allophanic material formation was minimal ( B horizons (45.4 ± 2.4) > C horizons (43.8 ± 4.2) ≈ tephra/lava (43.1), indicating accumulation of Al oxides and depletion of base cations in the upper horizons. Similarly, the base depletion index (BDI) showed a trend of A horizons (1.13 ± 0.18) < B horizons (1.25 ± 0.09) < C horizons (1.34 ± 0.20) ≈ tephra/lava (1.35), indicating depletion of base cations (Ca2+, Mg2+, K+, Na+) from the soil surface to C horizons. Based on solum depths (A + B horizons) and 200 years of post-eruption soil development, the solum formation rate ranged from 1.2 to 5.3 mm yr−1. Appreciable stocks of SOC (2.3–12.8 kg C m−2) and SON (0.21–0.77 kg m−2) accumulated over the 200 year period. Eruption materials from the Mt. Tambora eruption with a precisely known timescale contributed new pedological insights documenting rapid soil formation rates from pyroclastic materials leading to a rapid recovery of soil functions to support agricultural production.
Databáze: OpenAIRE