In-plane quasi-single-domain BaTiO$_3$ via interfacial symmetry engineering
Autor: | Jung-Woo Lee, Baoming Wang, Hyungwoo Lee, Venkatraman Gopalan, Kitae Eom, Tula R. Paudel, Sangwoo Ryu, Xiaoqing Pan, Thomas Tybell, Huaixun Huyan, Alexei Gruverman, S. Lindemann, Haidong Lu, Chang-Beom Eom, Yakun Yuan, Evgeny Y. Tsymbal, Tae Heon Kim, Shiming Lei, Wenpei Gao, Jacob A. Zorn, Longgui Chen |
---|---|
Rok vydání: | 2021 |
Předmět: |
Condensed Matter - Materials Science
Multidisciplinary Materials science Electronic properties and materials Condensed matter physics Science General Physics and Astronomy Second-harmonic generation Materials Science (cond-mat.mtrl-sci) FOS: Physical sciences General Chemistry Substrate (electronics) Polarization (waves) Ferroelectricity General Biochemistry Genetics and Molecular Biology Article Condensed Matter::Materials Science Piezoresponse force microscopy Scanning transmission electron microscopy Atomistic models Single domain Thin film |
Zdroj: | Nature Communications Nature Communications, Vol 12, Iss 1, Pp 1-8 (2021) |
DOI: | 10.48550/arxiv.2109.08296 |
Popis: | The control of the in-plane domain evolution in ferroelectric thin films is not only critical to understanding ferroelectric phenomena but also to enabling functional device fabrication. However, in-plane polarized ferroelectric thin films typically exhibit complicated multi-domain states, not desirable for optoelectronic device performance. Here we report a strategy combining interfacial symmetry engineering and anisotropic strain to design single-domain, in-plane polarized ferroelectric BaTiO3 thin films. Theoretical calculations predict the key role of the BaTiO3/PrScO3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${({{{{{\boldsymbol{110}}}}}})}_{{{{{{\bf{O}}}}}}}$$\end{document}(110)O substrate interfacial environment, where anisotropic strain, monoclinic distortions, and interfacial electrostatic potential stabilize a single-variant spontaneous polarization. A combination of scanning transmission electron microscopy, piezoresponse force microscopy, ferroelectric hysteresis loop measurements, and second harmonic generation measurements directly reveals the stabilization of the in-plane quasi-single-domain polarization state. This work offers design principles for engineering in-plane domains of ferroelectric oxide thin films, which is a prerequisite for high performance optoelectronic devices. In-plane polarized ferroelectric thin films typically exhibit complicated multidomain states, not desirable for optoelectronic device performance. Here, the authors combine interfacial symmetry engineering and anisotropic strain to design single-domain in-plane polarized ferroelectric BaTiO3 films. |
Databáze: | OpenAIRE |
Externí odkaz: |