Response of Cultured Neuronal Network Activity After High-Intensity Power Frequency Magnetic Field Exposure
Autor: | Kei Makino, Yukihisa Suzuki, Yasuhiko Jimbo, Satoshi Nakasono, Masayuki Takahashi, Atsushi Saito |
---|---|
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
Nervous system Physiology multi-electrode array Inhibitory postsynaptic potential lcsh:Physiology inhibitory synapse synchronized bursting activity 03 medical and health sciences Bursting chemistry.chemical_compound 0302 clinical medicine Physiology (medical) medicine Biological neural network Premovement neuronal activity Cultured neuronal network Original Research lcsh:QP1-981 power frequency magnetic field Long-term potentiation pacemaker-like neuron 030104 developmental biology medicine.anatomical_structure chemistry CNQX Biophysics neuronal network 030217 neurology & neurosurgery |
Zdroj: | Frontiers in Physiology Frontiers in Physiology, Vol 9 (2018) |
ISSN: | 1664-042X |
Popis: | High-intensity and low frequency (1–100 kHz) time-varying electromagnetic fields stimulate the human body through excitation of the nervous system. In power frequency range (50/60 Hz), a frequency-dependent threshold of the external electric field-induced neuronal modulation in cultured neuronal networks was used as one of the biological indicator in international guidelines; however, the threshold of the magnetic field-induced neuronal modulation has not been elucidated. In this study, we exposed rat brain-derived neuronal networks to a high-intensity power frequency magnetic field (hPF-MF), and evaluated the modulation of synchronized bursting activity using a multi-electrode array (MEA)-based extracellular recording technique. As a result of short-term hPF-MF exposure (50–400 mT root-mean-square (rms), 50 Hz, sinusoidal wave, 6 s), the synchronized bursting activity was increased in the 400 mT-exposed group. On the other hand, no change was observed in the 50–200 mT-exposed groups. In order to clarify the mechanisms of the 400 mT hPF-MF exposure-induced neuronal response, we evaluated it after blocking inhibitory synapses using bicuculline methiodide (BMI); subsequently, increase in bursting activity was observed with BMI application, and the response of 400 mT hPF-MF exposure disappeared. Therefore, it was suggested that the response of hPF-MF exposure was involved in the inhibitory input. Next, we screened the inhibitory pacemaker-like neuronal activity which showed autonomous 4–10 Hz firing with CNQX and D-AP5 application, and it was confirmed that the activity was reduced after 400 mT hPF-MF exposure. Comparison of these experimental results with estimated values of the induced electric field (E-field) in the culture medium revealed that the change in synchronized bursting activity occurred over 0.3 V/m, which was equivalent to the findings of a previous study that used the external electric fields. In addition, the results suggested that the potentiation of neuronal activity after 400 mT hPF-MF exposure was related to the depression of autonomous activity of pacemaker-like neurons. Our results indicated that the synchronized bursting activity was increased by hPF-MF exposure (E-field: >0.3 V/m), and the response was due to reduced inhibitory pacemaker-like neuronal activity. |
Databáze: | OpenAIRE |
Externí odkaz: |