Infinite monochromatic patterns in the integers
Autor: | Mauro Di Nasso |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
Algebra in the Stone-Čech compactification
Monochromatic patterns in the integers Mathematics::Commutative Algebra Ramsey theory Computer Science::Computational Geometry Primary 05D10 11B75 Secondary 03E05 Theoretical Computer Science Computational Theory and Mathematics Computer Science::Discrete Mathematics FOS: Mathematics Discrete Mathematics and Combinatorics Mathematics - Combinatorics Computer Science::Symbolic Computation Combinatorics (math.CO) |
Popis: | We show the existence of several infinite monochromatic patterns in the integers obtained as values of suitable symmetric polynomials. The simplest example is the following. For every finite coloring of the natural numbers $\mathbb{N}=C_1\cup\ldots\cup C_r$, there exists an increasing sequence $a |
Databáze: | OpenAIRE |
Externí odkaz: |