Multifunctional scaffolds for facile implantation, spontaneous fixation, and accelerated long bone regeneration in rodents
Autor: | Jordan D. Skelly, Ben Zhang, Jie Song, Jacob R. Maalouf, David C. Ayers |
---|---|
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
Scaffold Bone Regeneration Long bone Biocompatible Materials 02 engineering and technology Bone remodeling 03 medical and health sciences Osteogenesis medicine Animals Humans Bone regeneration Fixation (histology) Tissue Scaffolds Chemistry Biomaterial General Medicine 021001 nanoscience & nanotechnology Resorption Rats 030104 developmental biology medicine.anatomical_structure Bone Morphogenetic Proteins Swelling medicine.symptom 0210 nano-technology Biomedical engineering |
Zdroj: | Science translational medicine. 11(502) |
ISSN: | 1946-6242 |
Popis: | Graft-guided regenerative repair of critical long bone defects achieving facile surgical delivery, stable graft fixation, and timely restoration of biomechanical integrity without excessive biotherapeutics remains challenging. Here, we engineered hydration-induced swelling/stiffening and thermal-responsive shape-memory properties into scalable, three-dimensional-printed amphiphilic degradable polymer-osteoconductive mineral composites as macroporous, non-load-bearing, resorbable synthetic grafts. The distinct physical properties of the grafts enabled straightforward surgical insertion into critical-size rat femoral segmental defects. Grafts rapidly recovered their precompressed shape, stiffening and swelling upon warm saline rinse to result in 100% stable graft fixation. The osteoconductive macroporous grafts guided bone formation throughout the defect as early as 4 weeks after implantation; new bone remodeling correlated with rates of scaffold composition-dependent degradation. A single dose of 400-ng recombinant human bone morphogenetic protein-2/7 heterodimer delivered via the graft accelerated bone regeneration bridging throughout the entire defect by 4 weeks after delivery. Full restoration of torsional integrity and complete scaffold resorption were achieved by 12 to 16 weeks after surgery. This biomaterial platform enables personalized bone regeneration with improved surgical handling, in vivo efficacy and safety. |
Databáze: | OpenAIRE |
Externí odkaz: |