Subdiffusion in one-dimensional Hamiltonian chains with sparse interactions

v2: Lemma in section 3.1 expanded, otherwise only minor changes -->
Jazyk: English
ISSN: 0022-4715
1572-9613
DOI: 10.1007/s10955-020-02496-1⟩
Přístupová URL adresa: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::596e90f1516c80ab17a1bafb8cc8d2b6
https://hal.archives-ouvertes.fr/hal-02296140
Rights: OPEN
Přírůstkové číslo: edsair.doi.dedup.....596e90f1516c80ab17a1bafb8cc8d2b6
Autor: Wojciech De Roeck, François Huveneers, Stefano Olla
Přispěvatelé: Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL-Centre National de la Recherche Scientifique (CNRS), ANR-15-CE40-0020,LSD,Large Stochastic Dynamical Models in Non-Equilibrium Statistical Physics(2015), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), ANR-15-CE40-0020,LSD,Modèles stochastiques en grande dimension pour la physique statistique hors équilibre(2015)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Anderson Localization
subdiffusion
FOS: Physical sciences
01 natural sciences
010305 fluids & plasmas
symbols.namesake
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]
0103 physical sciences
Statistical physics
[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]
010306 general physics
Quantum
Condensed Matter - Statistical Mechanics
Mathematical Physics
Physics
Science & Technology
Statistical Mechanics (cond-mat.stat-mech)
Anharmonicity
Statistical and Nonlinear Physics
Mathematical Physics (math-ph)
Slow transport
ABSENCE
Fick's laws of diffusion
DIFFUSION
Physics
Mathematical

[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
Disordered systems
Griffiths Regions
Physical Sciences
symbols
Hamiltonian (quantum mechanics)
DECAY
Zdroj: Journal of Statistical Physics
Journal of Statistical Physics, Springer Verlag, In press, ⟨10.1007/s10955-020-02496-1⟩
Journal of Statistical Physics, Springer Verlag, 2020, 180, pp.678-698. ⟨10.1007/s10955-020-02496-1⟩
ISSN: 0022-4715
1572-9613
DOI: 10.1007/s10955-020-02496-1⟩
Popis: We establish rigorously that transport is slower than diffusive for a class of disordered one-dimensional Hamiltonian chains. This is done by deriving quantitative bounds on the variance in equilibrium of the energy or particle current, as a function of time. The slow transport stems from the presence of rare insulating regions (Griffiths regions). In many-body disordered quantum chains, they correspond to regions of anomalously high disorder, where the system is in a localized phase. In contrast, we deal with quantum and classical disordered chains where the interactions, usually referred to as anharmonic couplings in classical systems, are sparse. The system hosts thus rare regions with no interactions and, since the chain is Anderson localized in the absence of interactions, the non-interacting rare regions are insulating. Part of the mathematical interest of our model is that it is one of the few non-integrable models where the diffusion constant can be rigorously proven not to be infinite.
22 pages, 2 figures, to appear in Journal of Statistical Physics (JSP) v1-->v2: Lemma in section 3.1 expanded, otherwise only minor changes
Databáze: OpenAIRE