Counterexamples to inverse problems for the wave equation

Autor: Tony Liimatainen, Lauri Oksanen
Přispěvatelé: Department of Mathematics and Statistics, Inverse Problems
Rok vydání: 2022
Předmět:
Zdroj: Inverse Problems & Imaging. 16:467
ISSN: 1930-8345
1930-8337
DOI: 10.3934/ipi.2021058
Popis: We construct counterexamples to inverse problems for the wave operator on domains in $\mathbb{R}^{n+1}$, $n \ge 2$, and on Lorentzian manifolds. We show that non-isometric Lorentzian metrics can lead to same partial data measurements, which are formulated in terms certain restrictions of the Dirichlet-to-Neumann map. The Lorentzian metrics giving counterexamples are time-dependent, but they are smooth and non-degenerate. On $\mathbb{R}^{n+1}$ the metrics are conformal to the Minkowski metric.
Comment: 12
Databáze: OpenAIRE