Measurement of the Longitudinal Diffusion of Ionization Electrons in the MicroBooNE Detector
Autor: | G. Karagiorgi, W. Q. Gu, R. S. Fitzpatrick, N. Foppiani, Afroditi Papadopoulou, M. Reggiani-Guzzo, C. Mariani, M. Bishai, H. Greenlee, M. Rosenberg, K. Sutton, E.L. Snider, P. Guzowski, M. Kirby, Yichen Li, William Tang, Xiaolu Ji, M. Toups, K. Lin, B. R. Littlejohn, S. Prince, C. D. Moore, T. A. Bolton, A. Bhanderi, Y. T. Tsai, L. Bathe-Peters, L. Camilleri, S. Sword-Fehlberg, L.E. Yates, T. Kobilarcik, G. Scanavini, N. Kamp, G. A. Horton-Smith, G. Ge, L. Ren, Thomas Strauss, P. M. Hamilton, A. Hourlier, M. Del Tutto, B. Eberly, D. Franco, J. Sinclair, Marc Weber, J. Asaadi, J. I. Crespo-Anadón, Kate C. Miller, D. A. Martinez Caicedo, K. E. Duffy, T. Yang, O. Benevides Rodrigues, D. Totani, A. Mogan, Giuseppe Benedetto Cerati, C. Zhang, V. Basque, L.S. Rochester, T. L. Usher, Panagiotis Spentzouris, D. W. Schmitz, W. Ketchum, T. A. Mohayai, L. Mora Lepin, W. C. Louis, Antonio Ereditato, W. G. Seligman, P. Abratenko, A. P. Furmanski, R. Guenette, L. C. J. Rice, R. Sharankova, A. Schukraft, R. An, J. Anthony, N. Tagg, J. H. Jo, A. F. Moor, Y.-J. Jwa, E. D. Hall, K. Mistry, J. Moon, M. Nunes, G.D. Barr, R. K. Neely, R. Dorrill, S. A. Dytman, D. Caratelli, F. Cavanna, S. Berkman, C. Barnes, Z. Pavlovic, A. Rafique, E. Yandel, T. Wongjirad, Veljko Radeka, A. Mastbaum, J. St. John, M. Soderberg, Michael T. Murphy, K. Mason, Wei Wu, S. F. Pate, A. Lister, D. Naples, John Evans, Kazuhiro Terao, K. Manivannan, B. Baller, Andrew Blake, C. Thorpe, A. Paudel, L. Jiang, S. Gollapinni, E. Piasetzky, R. LaZur, Avi Ashkenazi, V. Paolone, G. Yarbrough, A. M. Szelc, S. Dennis, D. Garcia-Gamez, G. A. Fiorentini Aguirre, Janet Conrad, E. Gramellini, C. James, M. H. Shaevitz, I. Caro Terrazas, R. Itay, Steven Gardiner, M. Stancari, S. Wolbers, R. Castillo Fernandez, V. Papavassiliou, M. Mooney, M. Wospakrik, Xiaohui Qian, Patrick Green, Ornella Palamara, R. A. Johnson, G. P. Zeller, H. Y. Wei, J. Spitz, B. Viren, J. Mousseau, B. T. Fleming, D. Cianci, I. Lepetic, J. Zennamo, N. Wright, A. Bhat, M. E. Convery, M. Ross-Lonergan, T. Mettler, John Marshall, L. Cooper-Troendle, W. Van De Pontseele, I. D. Ponce-Pinto, H. E. Rogers, Yi Chen, R. Diurba, J. A. Nowak, S. Söldner-Rembold, E. Church, R. Fine, J. L. Raaf, D. Devitt, K. Li, X. Luo, S. Balasubramanian, L. Hagaman, M. A. Uchida, D. Marsden, N. Kaneshige, V. Meddage, N. McConkey, O. Goodwin, Andrew Smith, I. Kreslo, J. Mills, A. Navrer-Agasson, J. Rodriguez Rondon, Or Hen, Z. Williams |
---|---|
Přispěvatelé: | collaboration, The MicroBooNE |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Physics
Muon Physics - Instrumentation and Detectors Physics::Instrumentation and Detectors 530 Physics Detector Time projection Chambers (TPC) FOS: Physical sciences Cosmic ray Instrumentation and Detectors (physics.ins-det) Electron Noble liquid detectors (scintillation ionization double-phase) Ion High Energy Physics - Experiment Nuclear physics High Energy Physics - Experiment (hep-ex) Charge transport and multiplication in liquid media Electric field Ionization Diffusion (business) Instrumentation QC Mathematical Physics |
Zdroj: | Digibug. Repositorio Institucional de la Universidad de Granada instname Weber, Michele; Kreslo, Igor (2021). Measurement of the longitudinal diffusion of ionization electrons in the MicroBooNE detector. Journal of instrumentation, 16(09), P09025. Institute of Physics Publishing IOP 10.1088/1748-0221/16/09/P09025 |
ISSN: | 1748-0221 |
DOI: | 10.1088/1748-0221/16/09/P09025 |
Popis: | This document was prepared by the MicroBooNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. MicroBooNE is supported by the following: the U.S. Department of Energy, Office of Science, Offices of High Energy Physics and Nuclear Physics; the U.S. National Science Foundation; the Swiss National Science Foundation; the Science and Technology Facilities Council (STFC), part of the United Kingdom Research and Innovation; and The Royal Society (United Kingdom). Additional support for the laser calibration system and cosmic ray tagger was provided by the Albert Einstein Center for Fundamental Physics, Bern, Switzerland. Accurate knowledge of electron transport properties is vital to understanding the information provided by liquid argon time projection chambers (LArTPCs). Ionization electron drift-lifetime, local electric field distortions caused by positive ion accumulation, and electron diffusion can all significantly impact the measured signal waveforms. This paper presents a measurement of the effective longitudinal electron diffusion coefficient, D-L, in MicroBooNE at the nominal electric field strength of 273.9 V/cm. Historically, this measurement has been made in LArTPC prototype detectors. This represents the first measurement in a large-scale (85 tonne active volume) LArTPC operating in a neutrino beam. This is the largest dataset ever used for this measurement. Using a sample of similar to 70,000 through-going cosmic ray muon tracks tagged with MicroBooNE's cosmic ray tagger system, we measure D-L = 3.74(-0.29)(+0.28) cm(2)/s. Fermi Research Alliance, LLC (FRA) DE-AC02-07CH11359 United States Department of Energy (DOE) National Science Foundation (NSF) Swiss National Science Foundation (SNSF) European Commission Science and Technology Facilities Council (STFC), part of the United Kingdom Research and Innovation Royal Society of London Albert Einstein Center for Fundamental Physics, Bern, Switzerland |
Databáze: | OpenAIRE |
Externí odkaz: |