On a paraconsistentization functor in the category of consequence structures
Autor: | Diogo H. B. Dias, Edelcio G. de Souza, Alexandre Costa-Leite |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Functor
Logic 010102 general mathematics Classical logic Paraconsistent logic Order (ring theory) 0102 computer and information sciences Mathematics - Logic 01 natural sciences Algebra Philosophy TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES LÓGICA SIMBÓLICA 010201 computation theory & mathematics Computer Science::Logic in Computer Science FOS: Mathematics 0101 mathematics Logic (math.LO) Category theory Principle of explosion Mathematics |
Zdroj: | Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual) Universidade de São Paulo (USP) instacron:USP |
Popis: | This paper is an attempt to solve the following problem: given a logic, how to turn it into a paraconsistent one? In other words, given a logic in which \emph{ex falso quodlibet} holds, how to convert it into a logic not satisfying this principle? We use a framework provided by category theory in order to define a category of consequence structures. Then, we propose a functor to transform a logic not able to deal with contradictions into a paraconsistent one. Moreover, we study the case of paraconsistentization of propositional classical logic. This new version includes corrections and a change in the order of propositions |
Databáze: | OpenAIRE |
Externí odkaz: |