Semiclassical spectral series localized on a curve for the Gross-Pitaevskii equation with a nonlocal interaction
Autor: | A. V. Shapovalov, Anton E. Kulagin, Andrey Yu. Trifonov |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Physics and Astronomy (miscellaneous)
General Mathematics symmetry operators Semiclassical physics Space (mathematics) 01 natural sciences semiclassical approximation 010305 fluids & plasmas квазиклассическое приближение nonlocal interaction nonlinear spectral problem 0103 physical sciences Computer Science (miscellaneous) QA1-939 нелинейная спектральная задача Initial value problem 010306 general physics нелокальное взаимодействие Nonlinear Sciences::Pattern Formation and Solitons Eigenvalues and eigenvectors Mathematical physics Physics Condensed Matter::Quantum Gases Bose–Einstein condensate операторы симметрии Condensed Matter::Other stationary Gross–Pitaevskii equation Eigenfunction Gross–Pitaevskii equation Chemistry (miscellaneous) Parametric family Гросса-Питаевского уравнение Linear equation Mathematics Бозе-Эйнштейна конденсат |
Zdroj: | Symmetry. 2021. Vol. 132, № 7. P. 1289 (1-22) Symmetry, Vol 13, Iss 1289, p 1289 (2021) Symmetry Volume 13 Issue 7 |
Popis: | We propose the approach to constructing semiclassical spectral series for the generalized multidimensional stationary Gross–Pitaevskii equation with a nonlocal interaction term. The eigenvalues and eigenfunctions semiclassically concentrated on a curve are obtained. The curve is described by the dynamic system of moments of solutions to the nonlocal Gross–Pitaevskii equation. We solve the eigenvalue problem for the nonlocal stationary Gross–Pitaevskii equation basing on the semiclassical asymptotics found for the Cauchy problem of the parametric family of linear equations associated with the time-dependent Gross–Pitaevskii equation in the space of extended dimension. The approach proposed uses symmetries of equations in the space of extended dimension. |
Databáze: | OpenAIRE |
Externí odkaz: |