CROWD-BASED DATA-DRIVEN HYPOTHESIS GENERATION FROM DATA AND THE ORGANISATION OF PARTICIPATIVE SCIENTIFIC PROCESS

Autor: Akin Kazakçi, Yohann Sitruk
Přispěvatelé: Centre de Gestion Scientifique i3 (CGS i3), Centre National de la Recherche Scientifique (CNRS)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Design 2018 Conference
Design 2018 Conference, May 2018, Dubrovnik, Croatia
Popis: International audience; In scientific process, hypothesis generation is one the most important steps where creativity is needed most. As the science becomes more open and data-driven, it becomes interesting to analyse whether a crowdsourcing approach might be beneficial in this step. First, we characterize the process as a design process. Then, based on a real-life case study, we analyse and highlight difficulties and challenges for crowd-based hypothesis generation. Last, we give a generic process model for organizing in similar challenges in other data-based scientific hypothesis generation contexts.
Databáze: OpenAIRE