Direct Force Feedback Control and Online Multi-task Optimization for Aerial Manipulators

Autor: Marco Tognon, Gabriele Nava, Antonio Franchi, Quentin Sable, Daniele Pucci
Přispěvatelé: Istituto Italiano di Tecnologia (IIT), Équipe Robotique et InteractionS (LAAS-RIS), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), ANR-18-CE33-0001,The_flying_coworker,L'équipier volant(2018), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Digital Society Institute, Robotics and Mechatronics
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Optimization
0209 industrial biotechnology
Control and Optimization
Computer science
0211 other engineering and technologies
Biomedical Engineering
02 engineering and technology
law.invention
Computer Science::Robotics
020901 industrial engineering & automation
Artificial Intelligence
law
Position (vector)
Control theory
[INFO.INFO-SY]Computer Science [cs]/Systems and Control [cs.SY]
Torque sensor
[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO]
Quadratic programming
Manipulator
Force
Haptic technology
flyingcoworker
021103 operations research
Mechanical Engineering
Propeller
22/2 OA procedure
Feedback loop
Robot end effector
Computer Science Applications
Propellers
Dynamics
Human-Computer Interaction
Manipulators
Task (computing)
Control and Systems Engineering
Task analysis
Computer Vision and Pattern Recognition
Zdroj: IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters, 2020, 5 (2), pp.331-338. ⟨10.1109/LRA.2019.2958473⟩
IEEE Robotics and Automation Letters, IEEE 2020, 5 (2), pp.331-338. ⟨10.1109/LRA.2019.2958473⟩
IEEE Robotics and automation letters, 5(2), 331-338. IEEE
ISSN: 2377-3766
DOI: 10.1109/LRA.2019.2958473⟩
Popis: International audience; In this paper we present an optimization-based method for controlling aerial manipulators in physical contact with the environment. The multi-task control problem, which includes hybrid force-motion tasks, energetic tasks, and po-sition/postural tasks, is recast as a quadratic programming problem with equality and inequality constraints, which is solved online. Thanks to this method, the aerial platform can be exploited at its best to perform the multi-objective tasks, with tunable priorities, while hard constraints such as contact maintenance, friction cones, joint limits, maximum and minimum propeller speeds are all respected. An on-board force/torque sensor mounted at the end effector is used in the feedback loop in order to cope with model inaccuracies and reject external disturbances. Real experiments with a multi-rotor platform and a multi-DoF lightweight manipulator demonstrate the applicability and effectiveness of the proposed approach in the real world.
Databáze: OpenAIRE