A bilinear oscillatory integral estimate and bilinear refinements to Strichartz estimates on closed manifolds

Autor: Zaher Hani
Rok vydání: 2010
Předmět:
Zdroj: Anal. PDE 5, no. 2 (2012), 339-363
DOI: 10.48550/arxiv.1008.2827
Popis: We prove a bilinear $L^2(\R^d) \times L^2(\R^d) \to L^2(\R^{d+1})$ estimate for a pair of oscillatory integral operators with different asymptotic parameters and phase functions satisfying a transversality condition. This is then used to prove a bilinear refinement to Strichartz estimates on closed manifolds, similar to that on $\R^d$, but at a relevant semi-classical scale. These estimates will be employed elsewhere to prove global well-posedness below $H^1$ for the cubic nonlinear Schr\"odinger equation on closed surfaces.
Comment: 25 pages, Version 2 (revised version incorporating referee's remarks), to appear in Analysis and PDE
Databáze: OpenAIRE