Invariant measures and lower Ricci curvature bounds

Autor: Jaime Santos-Rodríguez
Rok vydání: 2018
Předmět:
DOI: 10.48550/arxiv.1810.11327
Popis: Given a metric measure space $(X,d,\mathfrak{m})$ that satisfies the Riemannian Curvature Dimension condition, $RCD^*(K,N),$ and a compact subgroup of isometries $G \leq Iso(X)$ we prove that there exists a $G-$invariant measure, $\mathfrak{m}_G,$ equivalent to $\mathfrak{m}$ such that $(X,d,\mathfrak{m}_G)$ is still a $RCD^*(K,N)$ space. We also obtain some applications to Lie group actions on $RCD^*(K,N)$ spaces. We look at homogeneous spaces, symmetric spaces and obtain dimensional gaps for closed subgroups of isometries.
Comment: 26 pages
Databáze: OpenAIRE