Popis: |
In the last few years, renewable energies became more socially and economically relevant, and among them, photovoltaic systems stand out. Residential self-consumption of electricity is a field with great potential, and implementation of grid-connected photovoltaic systems (GCPS) is in full rise. The installation of distributed generation systems in residential environments could alter the performance of low-voltage distribution networks, since these are designed for unidirectional power flow and adding these generators means fluctuations in power-flows. For these reasons, a study of the fundamental magnitudes of three low-voltage distribution networks located in Madrid was made for various photovoltaic penetration rates, making use of simulations via the software OpenDSS and subsequent analysis of results. The research concludes that, among other aspects, GCPS produce load flow variations that are dependent on: the penetration rates; the distance from the point of interest and the distribution transformer, increasing the voltage variation between the most productive hours and the night hours with that distance; and on the rate between consumption and generation, so that when it diminishes, the self-sufficiency of the system increases, and with it the voltage of all the buses that tend to the rated voltage. Moreover, there are wide seasonal fluctuations: specifically, in summer months, generation profiles override consumption fluctuations, while in winter months consumption guides voltage and power profiles. Both the code implemented and the results of the analysis were published in an open source website using a free software license. |