Character triples and equivalences over a group graded G-algebra
Autor: | Andrei Marcus, Virgilius-Aurelian Minuţă |
---|---|
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
Algebra and Number Theory Group (mathematics) 010102 general mathematics Mathematics::Rings and Algebras Block (permutation group theory) Mathematics - Rings and Algebras 01 natural sciences 20C20 (Primary) 20C05 16W50 16S35 16D90 18E30 (Secondary) Character (mathematics) Rings and Algebras (math.RA) Mathematics::Category Theory 0103 physical sciences FOS: Mathematics Order (group theory) 010307 mathematical physics 0101 mathematics Algebra over a field Representation Theory (math.RT) Mathematics - Representation Theory Mathematics |
DOI: | 10.48550/arxiv.1912.05666 |
Popis: | We introduce Morita and Rickard equivalences over a group graded G-algebra between block extensions. A consequence of such equivalences is that Spath's central order relation holds between two corresponding character triples. |
Databáze: | OpenAIRE |
Externí odkaz: |