Principal Bundle Structure of Matrix Manifolds

Autor: Anthony Nouy, Antonio Falcó, Marie Billaud-Friess
Přispěvatelé: Institut de Recherche en Génie Civil et Mécanique (GeM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), Departamento de Ciencias, Físicas, Matemáticas y de la Computación, Universidad CEU Cardenal Herrera, Producción Científica UCH 2021, UCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Grassmann
Variedades de

Mathematics - Differential Geometry
Pure mathematics
Differential topology
matrix manifolds
Rank (linear algebra)
General Mathematics
010103 numerical & computational mathematics
02 engineering and technology
01 natural sciences
Grassmann manifolds
Matrix (mathematics)
Manifolds (Mathematics)
Variedades (Matemáticas)
020204 information systems
Grassmannian
FOS: Mathematics
0202 electrical engineering
electronic engineering
information engineering

Computer Science (miscellaneous)
QA1-939
Geometría diferencial
Mathematics - Numerical Analysis
0101 mathematics
Mathematics::Symplectic Geometry
Engineering (miscellaneous)
Mathematics
Grassmann manifold
principal bundles
Atlas (topology)
Numerical Analysis (math.NA)
Geometry
Differential

low-rank matrices
Submanifold
Principal bundle
Manifold
Analytic manifold
Differential Geometry (math.DG)
[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]
Mathematics::Differential Geometry
15A03
15A23
55R10
65F99

Topología diferencial
[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
Zdroj: Mathematics, Vol 9, Iss 1669, p 1669 (2021)
CEU Repositorio Institucional
Fundación Universitaria San Pablo CEU (FUSPCEU)
Mathematics
Volume 9
Issue 14
ISSN: 2227-7390
Popis: In this paper, we introduce a new geometric description of the manifolds of matrices of fixed rank. The starting point is a geometric description of the Grassmann manifold Gr(Rk) of linear subspaces of dimension r<
k in Rk, which avoids the use of equivalence classes. The set Gr(Rk) is equipped with an atlas, which provides it with the structure of an analytic manifold modeled on R(k−r)×r. Then, we define an atlas for the set Mr(Rk×r) of full rank matrices and prove that the resulting manifold is an analytic principal bundle with base Gr(Rk) and typical fibre GLr, the general linear group of invertible matrices in Rk×k. Finally, we define an atlas for the set Mr(Rn×m) of non-full rank matrices and prove that the resulting manifold is an analytic principal bundle with base Gr(Rn)×Gr(Rm) and typical fibre GLr. The atlas of Mr(Rn×m) is indexed on the manifold itself, which allows a natural definition of a neighbourhood for a given matrix, this neighbourhood being proved to possess the structure of a Lie group. Moreover, the set Mr(Rn×m) equipped with the topology induced by the atlas is proven to be an embedded submanifold of the matrix space Rn×m equipped with the subspace topology. The proposed geometric description then results in a description of the matrix space Rn×m, seen as the union of manifolds Mr(Rn×m), as an analytic manifold equipped with a topology for which the matrix rank is a continuous map.
Databáze: OpenAIRE