Stability of the Atlantic meridional overturning circulation: a model intercomparison
Autor: | Marco Steinacher, Michael Eby, K. Alexander, G. Philippon-Berthier, Kirsten Zickfeld, Kaoru Tachiiri, Thierry Fichefet, Fortunat Joos, Jan Sedláček, Kathy S. Tokos, Michio Kawamiya, Katsumi Matsumoto, Masakazu Yoshimori, Andrew J. Weaver, Elisabeth Crespin |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
geography
Coupled model intercomparison project geography.geographical_feature_category 010504 meteorology & atmospheric sciences 530 Physics Ocean current Global warming Flux Representative Concentration Pathways 010502 geochemistry & geophysics 01 natural sciences Geophysics Shutdown of thermohaline circulation 13. Climate action Climatology General Earth and Planetary Sciences Environmental science Thermohaline circulation Ice sheet 550 Earth sciences & geology 0105 earth and related environmental sciences |
Zdroj: | Geophysical Research Letters Weaver, Andrew J.; Sedláček, Jan; Eby, Michael; Alexander, Kaitlin; Crespin, Elisabeth; Fichefet, Thierry; Philippon-Berthier, Gwenaëlle; Joos, Fortunat; Kawamiya, Michio; Matsumoto, Katsumi; Steinacher, Marco; Tachiiri, Kaoru; Tokos, Kathy; Yoshimori, Masakazu; Zickfeld, Kirsten (2012). Stability of the Atlantic meridional overturning circulation: A model intercomparison. Geophysical Research Letters, 39(20), n/a-n/a. American Geophysical Union 10.1029/2012GL053763 |
DOI: | 10.1029/2012GL053763 |
Popis: | The evolution of the Atlantic Meridional Overturning Circulation (MOC) in 30 models of varying complexity is examined under four distinct Representative Concentration Pathways. The models include 25 Atmosphere-Ocean General Circulation Models (AOGCMs) or Earth System Models (ESMs) that submitted simulations in support of the 5th phase of the Coupled Model Intercomparison Project (CMIP5) and 5 Earth System Models of Intermediate Complexity (EMICs). While none of the models incorporated the additional effects of ice sheet melting, they all projected very similar behaviour during the 21st century. Over this period the strength of MOC reduced by a best estimate of 22% (18%-25%; 5%-95% confidence limits) for RCP2.6, 26% (23%-30%) for RCP4.5, 29% (23%-35%) for RCP6.0 and 40% (36%-44%) for RCP8.5. Two of the models eventually realized a slow shutdown of the MOC under RCP8.5, although no model exhibited an abrupt change of the MOC. Through analysis of the freshwater flux across 30 degrees-32 degrees S into the Atlantic, it was found that 40% of the CMIP5 models were in a bistable regime of the MOC for the duration of their RCP integrations. The results support previous assessments that it is very unlikely that the MOC will undergo an abrupt change to an off state as a consequence of global warming. Citation: Weaver, A. J., et al. (2012), Stability of the Atlantic meridional overturning circulation: A model intercomparison, Geophys. Res. Lett., 39, L20709, doi:10.1029/2012GL053763. |
Databáze: | OpenAIRE |
Externí odkaz: |