Markovian explorations of random planar maps are roundish

Autor: Cyril Marzouk, Nicolas Curien
Přispěvatelé: Laboratoire de Mathématiques d'Orsay (LMO), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), European Project: ERC-2016-STG 716083,CombiTop, European Project, Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2019
Předmět:
Zdroj: Bulletin de la société mathématique de France
Bulletin de la société mathématique de France, Société Mathématique de France, 2020, 148 (4), pp.709-732. ⟨10.24033/bsmf.2821⟩
Bulletin de la société mathématique de France, 2020, 148 (4), pp.709-732. ⟨10.24033/bsmf.2821⟩
Bulletin de la Société mathématique de France
ISSN: 0037-9484
1777-568X
2102-622X
DOI: 10.48550/arxiv.1902.10624
Popis: The infinite discrete stable Boltzmann maps are "heavy-tailed" generalisations of the well-known Uniform Infinite Planar Quadrangulation. Very efficient tools to study these objects are Markovian step-by-step explorations of the lattice called peeling processes. Such a process depends on an algorithm which selects at each step the next edge where the exploration continues. We prove here that, whatever this algorithm, a peeling process always reveals about the same portion of the map, thus growing roughly metric balls. Applied to well-designed algorithms, this easily enables us to compare distances in the map and in its dual, as well as to control the so-called pioneer points of the simple random walk, both on the map and on its dual.
Comment: 17 pages, 3 figures
Databáze: OpenAIRE