Linear Regression Models and Neural Networks for the Fast Emulation of a Molecular Absorption Code

Autor: Guillaume Euvrard, Sidonie Lefebvre, Pierre Simoneau, Thierry Huet, Isabelle Rivals
Přispěvatelé: Equipe de Statistique Appliquée (UMRS 1158) (ESA), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Neurophysiologie Respiratoire Expérimentale et Clinique, Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), ONERA - The French Aerospace Lab [Châtillon], ONERA-Université Paris Saclay (COmUE)
Jazyk: angličtina
Rok vydání: 2009
Předmět:
0209 industrial biotechnology
010504 meteorology & atmospheric sciences
Absorption spectroscopy
Computer science
Materials Science (miscellaneous)
Computation
02 engineering and technology
Numerical approximation and analysis
[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]
01 natural sciences
Industrial and Manufacturing Engineering
Image (mathematics)
Absorption
Set (abstract data type)
020901 industrial engineering & automation
Optics
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
Linear regression
Radiative transfer
Business and International Management
0105 earth and related environmental sciences
Emulation
000.4430
010.1030
010.5620
200.4260
010.1300
Artificial neural network
Atmospheric propagation 110.2960 Image analysis
business.industry
[INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA]
Radiance
business
Algorithm
Nonlinear regression
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
Molecular absorption
Neural networks
Generator (mathematics)
Zdroj: Applied optics
Applied optics, Optical Society of America, 2009, 48 (35), pp.6770-6780
ISSN: 0003-6935
1539-4522
Popis: International audience; The background scene generator MATISSE, whose main functionality is to generate natural background radiance images, makes use of the so-called Correlated K (CK) model. It necessitates either to load or to compute thousands of CK coefficients for each atmospheric profile. When the CK coefficients cannot be loaded, the computation time becomes prohibitive. The idea developed in this paper is to substitute fast approximate models to the exact CK generator: using the latter, a representative set of numerical examples is built and used to train linear or nonlinear regression models. The resulting models enable an accurate CK coefficient computation for all the profiles of an image in a reasonable time.
Databáze: OpenAIRE