Numerical methods for immersed FSI with thin-walled structures
Autor: | Jean-Frédéric Gerbeau, Ludovic Boilevin-Kayl, Miguel Angel Fernández |
---|---|
Přispěvatelé: | COmputational Mathematics for bio-MEDIcal Applications (COMMEDIA), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Numerical simulation of biological flows (REO), Sorbonne Université (SU)-Inria de Paris, Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
General Computer Science
Fictitious domain method Computer science Unfitted meshes Fitted meshes 01 natural sciences 010305 fluids & plasmas symbols.namesake 0103 physical sciences Fluid–structure interaction Fluid-structure interaction Incompressible fluid 0101 mathematics Immersed thin-walled structure XFEM method ALE method Computer simulation Numerical analysis General Engineering Mechanics 010101 applied mathematics Test case Nitsche method Lagrange multiplier Benchmark (computing) Compressibility symbols [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] |
Zdroj: | Computers and Fluids Computers and Fluids, Elsevier, 2019, 179, pp.744-763. ⟨10.1016/j.compfluid.2018.05.024⟩ Computers and Fluids, 2019, 179, pp.744-763. ⟨10.1016/j.compfluid.2018.05.024⟩ |
ISSN: | 0045-7930 |
DOI: | 10.1016/j.compfluid.2018.05.024⟩ |
Popis: | International audience; The numerical simulation of a thin-walled structure immersed in an incompressible fluid can be addressed by various methods. In this paper, three of them are considered: the Arbitrary Lagrangian-Eulerian (ALE) method, the Fictitious Domain/Lagrange multipliers (FD) method and the Nitsche-XFEM method. Taking ALE as a reference, the advantages and limitations of FD and Nitsche-XFEM are carefully discussed on three benchmark test cases which have been chosen to be representative of typical difficulties encountered in valves or living cells simulations. |
Databáze: | OpenAIRE |
Externí odkaz: |