Regulation of normal cell cycle progression by flavin-containing oxidases

Autor: S. M. de Toledo, Perumal Venkatachalam, A. B. Carter, Douglas R. Spitz, Linda A. Tephly, Edouard I. Azzam, John B. Little, B N Pandey
Rok vydání: 2007
Předmět:
Zdroj: Oncogene. 27:20-31
ISSN: 1476-5594
0950-9232
DOI: 10.1038/sj.onc.1210634
Popis: Mechanisms underlying the role of reactive oxygen species (ROS) generated by flavin-containing oxidases in regulating cell cycle progression were examined in human and rodent fibroblasts. Incubation of confluent cell cultures with nontoxic/nonclastogenic concentrations of the flavoprotein inhibitor, diphenyleneiodonium (DPI), reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase activity and basal ROS levels, but increased proteolysis of cyclin D1, p21(Waf1) and phospho-p38(MAPK). When these cells were allowed to proliferate by subculture in DPI-free medium, an extensive G(1) delay was observed with concomitant activation of p53/p21(Waf1) signaling and reduced phosphorylation of mitogen-activated kinases. Compensation for decreased oxidant generation by simultaneous exposure to DPI and nontoxic doses of the ROS generators, gamma-radiation or t-butyl-hydroperoxide, attenuated the G(1) delay. Whereas the DPI-induced G(1) checkpoint was completely dependent on PHOX91, ATM and WAF1, it was only partially dependent on P53. Interestingly, G(1) to S progression was not affected when another flavin-containing enzyme, nitric oxide synthase, was inhibited nor was it associated with changes in mitochondrial membrane potential. Proliferating cells treated with DPI also experienced a significant but attenuated delay in G(2). We propose that ATM performs a critical function in mediating normal cellular proliferation that is regulated by nonphagocytic NAD(P)H oxidase enzymes activity, which may serve as a novel target for arresting cancer cells in G(1).
Databáze: OpenAIRE