Pan-cancer image-based detection of clinically actionable genetic alterations

Autor: Peter Boor, Chiara Loeffler, Akash Patnaik, Heike I. Grabsch, Jefree J. Schulte, Piet A. van den Brandt, Kai A. J. Sommer, Alexander T. Pearson, Loes F. S. Kooreman, Lara R. Heij, Jakob Nikolas Kather, Amelie Echle, Nadina Ortiz-Brüchle, Jan M. Niehues, Andrew Srisuwananukorn, Hermann Brenner, Nicole A. Cipriani, Andrew M. Hanby, Peter Bankhead, Hannah Sophie Muti, Sara Kochanny, Valerie Speirs, Roman D. Buelow, Jeremias Krause, Michael Hoffmeister, Tom Luedde, Dirk Jäger, Christian Trautwein
Přispěvatelé: RS: NUTRIM - R2 - Liver and digestive health, MUMC+: DA Pat AIOS (9), Pathologie, RS: GROW - R2 - Basic and Translational Cancer Biology, MUMC+: DA Pat Pathologie (9), Epidemiologie, RS: GROW - R1 - Prevention
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Nature Cancer, 1(8), 789-799. Nature Publishing Group
Nat Cancer
Nature Cancer
Kather, J N, Heij, L R, Grabsch, H, Loeffler, C, Echle, A, Muti, H S, Krause, J, Niehues, J M, Sommer, K A J, Bankhead, P, Kooreman, L F S, Schulte, J J, Cipriani, N A, Buelow, R D, Boor, P, Ortiz-Bruchle, N, Hanby, A M, Speirs, V, Kochanny, S, Patnaik, A, Srisuwananukorn, A, Brenner, H, Hoffmeister, M, Brandt, P A V D, Jäger, D, Trautwein, C, Pearson, A T & Luedde, T 2020, ' Pan-cancer image-based detection of clinically actionable genetic alterations ', nature cancer, vol. 1, no. 8, pp. 789–799 . https://doi.org/10.1038/s43018-020-0087-6
ISSN: 2662-1347
DOI: 10.1038/s43018-020-0087-6
Popis: Molecular alterations in cancer can cause phenotypic changes in tumor cells and their microenvironment. Routine histopathology tissue slides, which are ubiquitously available, can reflect such morphological changes. Here, we show that deep learning can consistently infer a wide range of genetic mutations, molecular tumor subtypes, gene expression signatures and standard pathology biomarkers directly from routine histology. We developed, optimized, validated and publicly released a one-stop-shop workflow and applied it to tissue slides of more than 5,000 patients across multiple solid tumors. Our findings show that a single deep learning algorithm can be trained to predict a wide range of molecular alterations from routine, paraffin-embedded histology slides stained with hematoxylin and eosin. These predictions generalize to other populations and are spatially resolved. Our method can be implemented on mobile hardware, potentially enabling point-of-care diagnostics for personalized cancer treatment. More generally, this approach could elucidate and quantify genotype-phenotype links in cancer. Two papers by Kather and colleagues and Gerstung and colleagues develop workflows to predict a wide range of molecular alterations from pan-cancer digital pathology slides.
Databáze: OpenAIRE