DCoflow: Deadline-Aware Scheduling Algorithm for Coflows in Datacenter Networks

Autor: Quang-Trung Luu, Olivier Brun, Rachid El-Azouzi, Francesco de Pellegrini, Balakrishna Prabhu, Cédric Richier
Přispěvatelé: Équipe Services et Architectures pour Réseaux Avancés (LAAS-SARA), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Laboratoire Informatique d'Avignon (LIA), Avignon Université (AU)-Centre d'Enseignement et de Recherche en Informatique - CERI
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: IFIP Networking Conference
IFIP Networking Conference, Jun 2022, Catania, Italy. ⟨10.23919/IFIPNetworking55013.2022.9829789⟩
HAL
DOI: 10.23919/IFIPNetworking55013.2022.9829789⟩
Popis: Datacenter networks routinely support the data transfers of distributed computing frameworks in the form of coflows, i.e., sets of concurrent flows related to a common task. The vast majority of the literature has focused on the problem of scheduling coflows for completion time minimization, i.e., to maximize the average rate at which coflows are dispatched in the network fabric. Modern applications, though, may generate coflows dedicated to online services and mission-critical computing tasks which have to comply with specific completion deadlines. In this paper, we introduce $\mathtt{DCoflow}$, a lightweight deadline-aware scheduler for time-critical coflows in datacenter networks. The algorithm combines an online joint admission control and scheduling logic and returns a $\sigma$-order schedule which maximizes the number of coflows that attain their deadlines. Extensive numerical results demonstrate that the proposed solution outperforms existing ones.
Comment: Accepted to IFIP Networking 2022 (Catania, Italy)
Databáze: OpenAIRE