A Categorical Setting for Lower Complexity
Autor: | Robin Cockett, Brian F. Redmond |
---|---|
Rok vydání: | 2010 |
Předmět: |
Discrete mathematics
General Computer Science Computation recursion principles 010102 general mathematics Polarized categories 0102 computer and information sciences Composition (combinatorics) 01 natural sciences law.invention Theoretical Computer Science Algebra 010201 computation theory & mathematics law Mathematics::Category Theory Primitive recursive function Cartesian coordinate system fibrations 0101 mathematics complexity Categorical variable Mathematics Computer Science(all) |
Zdroj: | MFPS |
ISSN: | 1571-0661 |
DOI: | 10.1016/j.entcs.2010.08.017 |
Popis: | A polarized strong category consists of a cartesian category, X, and a category Y, together with a module M:X×Y→Y equipped with a strong composition and identities. These categories can be used to provide an abstract setting for investigating computational setting with complexity below primitive recursive. This paper develops the theory of polarized strong categories, explains how they relate to the theory of fibrations, and provides a concrete example which illustrates their applicability to these lower complexity systems of computation. |
Databáze: | OpenAIRE |
Externí odkaz: |