Sensing Atomic Motion from the Zero Point to Room Temperature with Ultrafast Atom Interferometry
Autor: | J. Mizrahi, Christopher Monroe, J. D. Wong-Campos, K. G. Johnson, Brian Neyenhuis |
---|---|
Rok vydání: | 2015 |
Předmět: |
Condensed Matter::Quantum Gases
Physics Quantum Physics Range (particle radiation) Atom interferometer Atomic Physics (physics.atom-ph) Phonon FOS: Physical sciences General Physics and Astronomy Zero-point energy Nanotechnology Physics - Atomic Physics Ion Momentum Interferometry Physics::Atomic Physics Atomic physics Quantum Physics (quant-ph) Ground state |
Zdroj: | Physical Review Letters. 115 |
ISSN: | 1079-7114 0031-9007 |
DOI: | 10.1103/physrevlett.115.213001 |
Popis: | We sense the motion of a trapped atomic ion using a sequence of state-dependent ultrafast momentum kicks. We use this atom interferometer to characterize a nearly-pure quantum state with $n=1$ phonon and accurately measure thermal states ranging from near the zero-point energy to $\bar{n}\sim 10^4$, with the possibility of extending at least 100 times higher in energy. The complete energy range of this method spans from the ground state to far outside of the Lamb-Dicke regime, where atomic motion is greater than the optical wavelength. Apart from thermometry, these interferometric techniques are useful for characterizing ultrafast entangling gates between multiple trapped ions. |
Databáze: | OpenAIRE |
Externí odkaz: |